| 1. | Group congruences on an eventually regular semigroup 逆半群上的一类特殊同余 |
| 2. | Rectangular group congruences on regular semigroups 正则半群上的矩形群同余 |
| 3. | Fuzzy group congruences on a semigroup 半群上的模糊群同余 |
| 4. | The greatest idempotent - separating congruence and group congruences on a weakly inverse semigroup 弱逆半群上最大幂等元分离同余和群同余 |
| 5. | In the description of group congruence , we give the generalization of the results of d . r . latorre [ 1 ] Latorre对正则半群作的一些结果推广到了一般半群。 |
| 6. | A note on the greatest idempotent - separating congruence and group congruences on a weakly inverse semigroup 关于弱逆半群上最大幂等元分离同余和群同余的注记 |
| 7. | ; bothsides in [ 5 ] , [ 6 ] , the authors determine structures and the least group congruences . these results make us have a more explicit conception about semidirect products and structures and congruences on them 这些结果使我们对以上这些幺半群的半直积及其结构和同余有了一个比较明确的认识。 |
| 8. | We also describe the group congruence class by the subset tu , and we show that tvp = ropot , where p is a congruence and r is a group congruence of s . we describe some properties of a unitary and dense e - semigroup 还指出:半群s的任意同余p与它的群同余,的并, v厂一n严认文章还使某些结论在酉的稠密e半群中得到体现并进一步简化 |
| 9. | Finally , we show that is a semilattice of groups congru - ence if and only if ( na ) u is a seminormal subsemigroup on 5 , where pna is a group congruence on the semilattice congruence class sa of 5 在这一章的最后文章绪出了半群s上的半格同燃so上的群同余pno的并i ’ upe成为s上的群的半格同余的充分必要条件为u ( na切oeyoey是s的半正规子半群 |
| 10. | In the second chapter , we give the description of the least group congruence on a - regular semigroup s . in the third chapter , we describe the group congruences on a semigroup s and construct the semilattice of groups congruence on it 本文的第三章对一般半群上的群同余作了描述,并且对其群的半格同余进行了构造。在对群同余的描述中,事实上是把d |